
Common Lisp in the Wild

Deploying Common Lisp Applications

Wimpie Nortje

CL IN THE WILD - FREE SAMPLE



Copyright c© 2016,2017 Wimpie Nortje

PUBLISHED BY WIMPIE NORTJE

WWW.DARKCHESTNUT.COM

Revision 2: March 27, 2017

CL IN THE WILD - FREE SAMPLE



1. Introduction

Common Lisp in the Wild is for people who want to create production
software using Common Lisp. You may find the book useful if you
need help deploying your first Common Lisp application or if you
already use it in production and want to compare notes.

My goal is to get you from stuck to deployed in the shortest
possible time. Except for the tidbits about portable binaries, everything
in the book comes from my personal experience.

As with all things Lisp there are multiple options for every task. At
the right time this is an empowering experience. At the wrong time it
is daunting and paralyzing. The examples avoid selection paralysis by
using the same tool for the same task every time. They are complete,
to the point and build on each other without making conceptual jumps.

The tools were chosen to meet my needs for reproducible de-
ployments. I did not evaluate many tools to find the perfect one but
rather used the first one which worked. This leaves ample room for
optimization if one needs to.

The toolchain I employ consists of the following:

CL IN THE WILD - FREE SAMPLE



12 Chapter 1. Introduction

Compiler SBCL and CCL. The examples only mention SBCL but
they run as-is on CCL. Building CCL based binaries requires a
CCL version of Buildapp. This requires some tinkering to get
working which is not discussed in the book.

System definition ASDF
System management Quicklisp
System version management Qlot
Image generation Buildapp
Build system make

Basic Common Lisp knowledge is required to make sense of
the book. You will also need a working development environment,
including Quicklisp, to run the examples.

I hope you find the book useful and that it saves you some time
and frustration.

CL IN THE WILD - FREE SAMPLE



7. Portability

Software is portable when it can be moved between different environ-
ments and still produce the desired results. Portability can refer to
either the source code or the final binary. Section 7.2 briefly discusses
binary portability but the bulk of the discussion is about source code
portability.

Source code portability is a desirable characteristic because it
enables the program to run on different types of computers without
modifying the source code. It also allows the program to be compiled
by multiple compilers without modification.

The first reason is important because it increases the program’s
target audience with very little effort. The second reason is important
because the compiler can be chosen based on its strengths in any given
situation. It is also a fact of life that products come and go. It is not
prudent to lock a project into a specific compiler for no good reason.

There are other reasons why portability is desirable but these two
reasons are important enough that it pays to keep you project portable,
even when you don’t think you need it.

CL IN THE WILD - FREE SAMPLE



58 Chapter 7. Portability

7.1 Portable source code

Most applications can be written completely portable by paying at-
tention to portability across operating systems, across compilers and
across file locations. There are instances where one may need to con-
sider lower level portability, like processor architecture, but they are
beyond the scope of this book.

7.1.1 Operating system independence

Operating system independence is important when an application must
be available on multiple operating systems. When the code is portable
only one project needs to be maintained instead of a dedicated project
for each operating system.

The easiest way to keep code OS independent is to use portable
libraries which support all the necessary functions on all the target
platforms. Many of the “trivial-. . . ” libraries wrap OS specific details
to provide a small set of functions with a single interface across all
platforms.

Sometimes OS specific code is unavoidable. This code should be
abstracted into an OS independent function which should have the
same effect on all the supported operating systems. Listing 7.1 shows
the principle.

Listing 7.1: Portability: Abstract OS specific code into functions.

#+windows
(defun os-dependent-calculation()

(the-windows-way))

#+linux
(defun os-dependent-calculation()

(the-linux-way))

#+osx
(defun os-dependent-calculation()

CL IN THE WILD - FREE SAMPLE



7.1 Portable source code 59

(the-apple-way))

#-(or windows linux osx)
(error "Function ’os-dependent-calculation’ is not

yet implemented on this operating system.")

(defun main()
(use-calculated-value (os-dependent-calculation)))

Special care must be taken with standard Common Lisp functions
which vary between operating systems and compilers. Bugs due to
these functions are especially hard to eradicate because the code tend
to proliferate through a project and the differences between platforms
are subtle. The main example for this is file system access. Use UIOP
for everything related to pathnames.

Avoid all libraries which depend on particular operating system
properties. They tend to provide capabilities which are not available
on all operating systems. There are usually other methods or libraries
that can achieve the same result in a cross-platform way. An example
is Posix system calls.

The “windows”, “linux” and “osx” *FEATURES* used in listing
7.1 are sufficient when you stick with SBCL and CCL. Keep in mind
that they are not completely portable accross all implementations
though. The “trivial-features” library can be used to make your code
portable across an even larger spectrum of implementations and OS’s.

Key points
• Use portability libraries for all interaction with the operating

system.
• Abstract OS specific calls into a platform independent func-

tion.
• Use UIOP for everything related to pathnames.
• Never use libraries which depend on specific OS properties,

CL IN THE WILD - FREE SAMPLE



60 Chapter 7. Portability

for example Posix compatibility.
• Use trivial-features to ensure that your feature checks are

also portable.

7.1.2 Compiler independence

Compiler independent code saves you time and gives you options.
There exists a number of mature Common Lisp compilers. All of them
are very good in general and each excel in a different situation.

When your code is portable you can change your compiler any time
during a project. You can use a fast compiling one during development
and switch to a compiler which generates fast code for production, or
you can select the compiler based on its support for the target operating
system.

SBCL shows a disclaimer on Windows stating that it is unstable
for multi-threaded applications. Keeping code compiler independent
would allow the project to be developed on Linux in SBCL and de-
ployed on Windows with CCL – without changing the source code.

Writing compiler independent code consist mostly of avoiding
compiler specific extensions and libraries. SB-SYS and SB-EXT are
examples of compiler specific libraries provided by SBCL. In CCL
the “#_” reader macro is an example of an extension.

Most compiler specific code can be replaced by portable libraries.
Should it really become necessary to use such code, it must be ab-
stracted into a portable function. It is a good idea to ensure that the
abstraction function will cause visible errors as early as possible when
used on unsupported compilers. Listing 7.2 shows the principle.

Listing 7.2: Portability: Abstract compiler specific code into functions.

#+sbcl
(defun compiler-dependent-calculation()

(the-sbcl-way))

CL IN THE WILD - FREE SAMPLE



7.1 Portable source code 61

#+ccl
(defun compiler-dependent-calculation()

(the-ccl-way))

#-(or sbcl ccl)
(error "Function ’compiler-dependent-calculation’ is

not yet implemented on this compiler.")

(defun main()
(use-calculated-value
(compiler-dependent-calculation)))

Key points
• Avoid compiler specific extensions.
• Abstract compiler specific code into portable functions. En-

sure it fails quickly and loudly on unsupported compilers.

7.1.3 Location independence

Location dependent standalone executables can not be deployed. They
will only function on the machine where they were built. Location
bound source distributions may work but they will hinder server ad-
ministration. The issues addressed here mostly apply to standalone
executables but addressing them in source code distributions can only
be beneficial.

Programs often use the same directory for a particular task for
long periods. User home directories, temporary directories and the
application’s installed location are all examples. It is almost instinct
to use DEFVAR or DEFPARAMETER to declare values that hold the
pathnames to these locations.

Listing 7.3: Location bound directory definition.

(defparameter *APP-CONFIG-DIR*
(uiop:subpathname

CL IN THE WILD - FREE SAMPLE



62 Chapter 7. Portability

(user-homedir-pathname) ".myapp" :type :directory)
"This is location bound because the value will be
fixed at build time.")

Storing such a pathname as a constant value is a problem because
the value will be fixed at build time. The value for the user’s home di-
rectory will definitely be wrong because it will hold the home directory
on the build machine. There is a high likelihood that the installation
location will also be wrong because people often install programs in
unexpected places. The temporary directory can also vary between
installations due to system policy variance.

The solution for the changing pathames is to to calculate the
pathname whenever this value is needed with a function.

Listing 7.4: Portable directory definition.

(defun app-config-dir ()
"This is portable because the value is recalculated
every time it is used."
(uiop:subpathname
(user-homedir-pathname) ".myapp" :type :directory))

When the directory under consideration is a “standard” system
directory like the user’s home directory or the global temporary direc-
tory, don’t make assumptions about its value. The correct pathname
for these “standard” system directories varies not only between differ-
ent operating systems, but also between different versions of the same
operating system. Especially on Windows. Getting the correct values
for these directories is not a trivial task. Use the compiler’s built-in
functions for this purpose.

Listing 7.5 demonstrates functions for four regular cases. Note
that it doubles as an abstraction for compiler specific code.

Listing 7.5: Portability: Calculate common directory pathnames.

CL IN THE WILD - FREE SAMPLE



7.1 Portable source code 63

;; User’s home directory
(user-homedir-pathname)

;; General temporary directory
(uiop:temporary-directory)

;; Location of the .asd file (Source distributions)
(asdf:system-source-directory :my-project)

;; Location of the executable (Standalone binaries)
(defun executable-pathname ()

#+sbcl sb-ext:*runtime-pathname*
#+ccl (uiop:pathname-directory-pathname

ccl:*heap-image-name*))

Every shared library dependency is another instance where the
application is location dependent and which could make the program
undeployable. Building standalone binaries which use shared libraries
was discussed in depth in chapter 5.6. The suggestions mentioned
there also apply to source distributions.

Key points
• Don’t store pathnames with unchanging values in DEFVAR

or DEFPARAMETER. The values are determined at build
time, not run time.

• Calculate values for unchanging pathnames at run time with
functions.

• Use the compiler’s built-in functions to get pathnames for
OS system directories.

• Ensure the suggestions in chapter 5.6 regarding shared li-
braries are implemented.

CL IN THE WILD - FREE SAMPLE



64 Chapter 7. Portability

7.2 Portable binaries

The goal of source code portability is to write code which is compi-
lable, without modification, on the widest possible range of targets.
In contrast, the goal of binary portability is to build a standalone bi-
nary which is executable, without modification, on the widest possible
range of targets.

Binary portability is important in grid-like computing environ-
ments. The SETI research project and the Steam gaming platform are
well-known examples.

In this environment the executing machine can be of any hardware
platform, running any version of any particular operating system. The
machine’s specifications are determined by the user. It is not viable to
create an executable for every possible combination of hardware and
software which may be available as executing machines. To reach the
widest possible audience it is to the application provider’s advantage
if the same application binary can run on a variety of platforms.

Creating portable binaries is a specialized topic and is beyond
the scope of this book. If you find it interesting you should consult
resources dedicated to the topic. A few ideas which could help get
you going:

• The distribution should include all of the application’s dependen-
cies. There should be no dependency on the operating system
to provide libraries other than the most basic ones.

• During the build process, just before saving the Lisp image,
update SB-SYS:*SHARED-OBJECTS* or CCL::*SHARED-
LIBRARIES* to use absolute paths to the bundled shared li-
braries.

CL IN THE WILD - FREE SAMPLE


